SPECIFICATIONS (Module H):

Hall Probe 03C for the SENIS I3C Magnetic Field Transducers and 3MH5 Digital Teslameters is a very robust, single-chip integrated 3-axis Hall- Probe.

The Probe contains a CMOS integrated circuit, which incorporates three groups of Hall elements and a temperature sensor.

The integrated Hall elements occupy very small area (100 x 100 µm²), which provides very high spatial resolution of the probe.

The sensor chip is embedded in the probe package and connected to the CaH cable, which makes this probe both mechanically and electrically very robust.

The chip is glued onto a reference ceramic plate suitable for an appropriate fixing of the probe.

Key features of the I3C–03C HALL PROBE SYSTEM:

- Very robust Hall Probe. The chip is glued onto a reference ceramic plate suitable for an appropriate fixing of the probe
- Integrated CMOS 3-axis (Bx, By, Bz) Hall Probe, of which one, two, or three channels are used
- Very low noise and offset fluctuations
- Very high spatial resolution (By: 30 x 5 x 30 µm³; Bx and Bz: 100 x 10 x 100 µm³)
- Very high linearity
- High angular accuracy (orthogonality error less than 0.1°)
- Virtually no planar Hall Effect
- Negligible inductive loops on the Probe
- Integrated temperature sensor on the probe for temperature compensation
HALL PROBE and CABLE DIMENSIONS AND CHARACTERISTICS

Figure 1. Dimensions of the I3C-03CxxL Hall Probe and Cable (Module H).
NOTE: Different lengths of the CaH Cable are available, upon a request.
Figure 4. Reference Cartesian coordinate system of the integrated 3-axis Hall probe I3C-03CxxL

<table>
<thead>
<tr>
<th>Parameter</th>
<th>X (mm)</th>
<th>Y (mm)</th>
<th>Z (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magnetic Field sensitive volume (MFSV)</td>
<td>0.10</td>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>Position of the FSV centre of the sensor</td>
<td>2.00 ± 0.05</td>
<td>-0.55 -0.05/+0.00</td>
<td>-0.50 ± 0.05</td>
</tr>
<tr>
<td>Total probe external dimensions</td>
<td>4.00 ± 0.05</td>
<td>0.90 ± 0.05</td>
<td>8.00 ± 0.05</td>
</tr>
</tbody>
</table>

Positioning accuracy

Angular accuracy of axes with respect to the reference surface ±0.5°, Determined during calibration

Cable properties

Length: 6m (max. tolerance ±0.1m) (the probe cable is determined with a 22-pins LEMO plug FGG.3B.322.CLA062Z for a connection with the electronic box)

Conductor: Silver plated soft copper core, 7 x 44 AWG

Insulation: PFA (Perfluoroalkoxy), diameter 0.30 mm

Twisting: 15 x Diameter

Shield: Silver plated soft copper braid

Jacket: PFA (Perfluoroalkoxy)

Service temperature: -196 / +200 °C

Linear resistance: 1.4 Ω/m

Rated voltage: 150 Vac

RoHS compliance: Yes
INSTALLATION MANUAL FOR THE 03C HALL PROBE

Though the 03C probe is very robust with respect to its size, it should be handled with special care. Considering that we deal with a high-precision device of very small dimensions, following precautions should help to avoid damage to the probe during installation and handling, and ensure that the device’s accurate calibration remains preserved:

- The Hall Probe is sensitive to Electrostatic Discharge (ESD). Please follow the proper ESD protection precautions when handling the Hall probe.
- The mounting of the Probe should be carried out by application of very low pressure to its head and particularly on the thin cable.
- Do not apply more force than required to hold the probe in its place. Damage to either the ceramics package of the Hall sensor or thin wiring could destroy the Probe.
- If the probe head is clamped, the user needs to make sure that the environment surface in contact with the reference plane of the probe is flat and covers as much of the probe reference surface as possible. Do not apply more force than required to hold the probe in its mounting.
- In order to prevent rupture of the thin probe wiring, the user should fix and secure the probe cable in the proximity of the head. The thin wires of the flexible section of the probe can be folded only with a special care. Any repetition sharp bending must be strongly avoided.

- Do not expose the thin cable to the external sharp edges.
- Avoid any high pressure and bending of the transient cable section between the thin and thick Probe cables.
- Avoid the immersion of the probe of any liquid, and its exposure to moisture and aggressive gasses.