

MINI HELMHOLTZ COILS MHC-8_1

DESCRIPTION:

Mini Helmholtz Coil is made as combination of two one-turn coils integrated on two printed circuit boards. They can be connected to a current source by IEEE 1284 (36 pins male) connector, as shown on *Figure 1*.

Considering the dimensions of the Helmholtz Coils and the maximal current, the magnetic flux density in the middle point between the used coils is:

$$B = \left(\frac{4}{5}\right)^{\frac{3}{2}} \frac{\mu_0 NI}{r} = k \cdot I$$

N - number of windings of each coil (in our case, ~N=1) μ_0 - magnetic permeability in vacuum ($\mu_0=4\pi\cdot 10^{-7}~\frac{Tm}{A}$)

r - the radius of the Helmholtz coils (in our case is r = 4 mm)

Figure 1. Dimensions of MHC-x_x

KEY FEATURES & TYPICAL APPLICATIONS

- Generation of high magnetic fields (up to 2.25mT) in a small volume
- Very high frequency bandwidth: DC 1MHz
- Very low impedance:
 - $R = 0.1\Omega$, $L = 0.3\mu H$, C = 1 p F
- Characterization of magnetic field sensors
- Application in laboratories for research and development, etc.

Figure 2. Photo of MHC-8_1

SPECIFICATIONS (MHC-8_1):

MHC-8_1	
Max. current	I _{PP} =10 [A]
Coil constant	k = 2.25·10 ⁻⁴ [T/A]
Coil diameter	R = 8 [mm]
Number of turns	N = 1
R	0.1Ω
L	0.3μН
С	1pF
Option	Resonant circuit for higher
	currents

MHC-x_x Dimensions & Tolerances [mm]		
L = 60 ± 0.5	$L1 = 80 \pm 1$	
$H = 6.5 \pm 0.5$	$H1 = 15.5 \pm 0.5$	
$W = 50 \pm 0.5$	$W1 = 62 \pm 0.5$	

Recommended bipolar current source (DC-1MHz): SENIS HEFR 2008

SENIS AG

Grabenstrasse 25, 6340 Baar, Switzerland Web : <u>www.senis.ch</u> ; Email: <u>transducers@senis.ch</u> Phone: +41 (44) 508 7029; Fax: +41 (43) 205 2638
 North American Distributor:
 GMW Associates
 Rev.01,

 955 Industrial Road, San Carlos, CA 94070, USA
 Nov. 2012

 Web:
 www.gmw.com ; Email: sales@gmw.com
 Page 1/1

 Phone: +1 (650) 802 8292; Fax: +1 (650) 802 8298
 Page 1/1