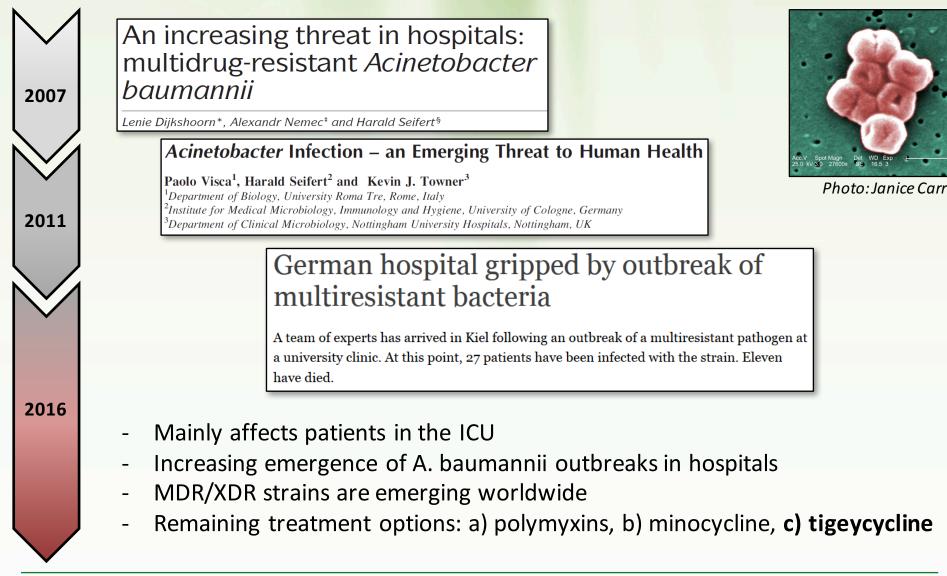
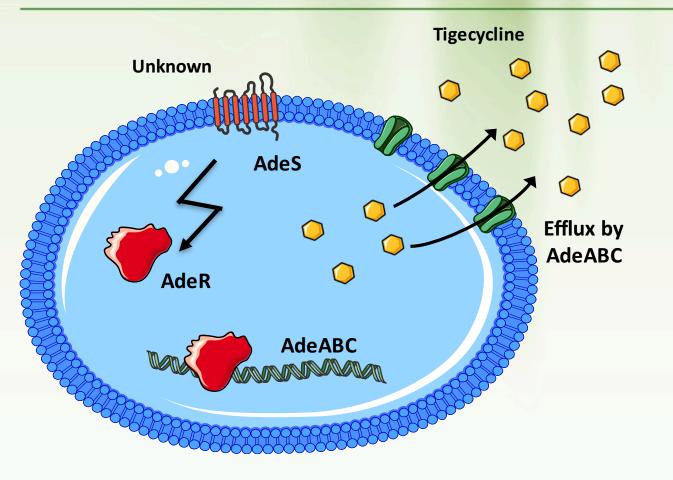


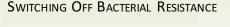
SWITCHING OFF BACTERIAL RESISTANCE

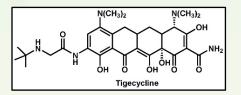

The target evaluation platform revealed an AdeR unrelated tigecycline resistance mechanism in XDR Acinetobacter baumannii

Vincent Trebosc^{1,2}, Sarah Gartenmann¹, Kevin Royet¹, Pablo Manfredi², Birgit Schellhorn¹, Michel Pieren¹, Sergio Lociuro¹, Peter C. Sennhenn¹, Marc Gitzinger¹, Marcel Tigges¹, Dirk Bumann², and Christian Kemmer¹

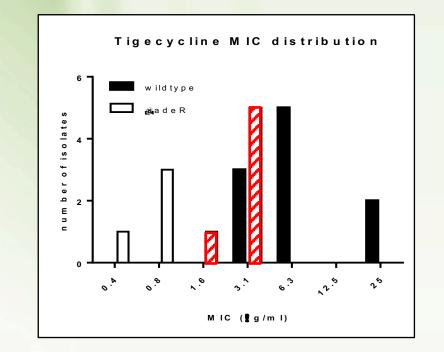
¹ BioVersys AG, Hochbergerstrasse 60c, CH-4057 Basel, Switzerland
² Biozentrum, University of Basel, Klingenbergstrasse 70, CH-4056 Basel, Switzerland


Acinetobacter baumannii – an increasing threat in health care units BIC





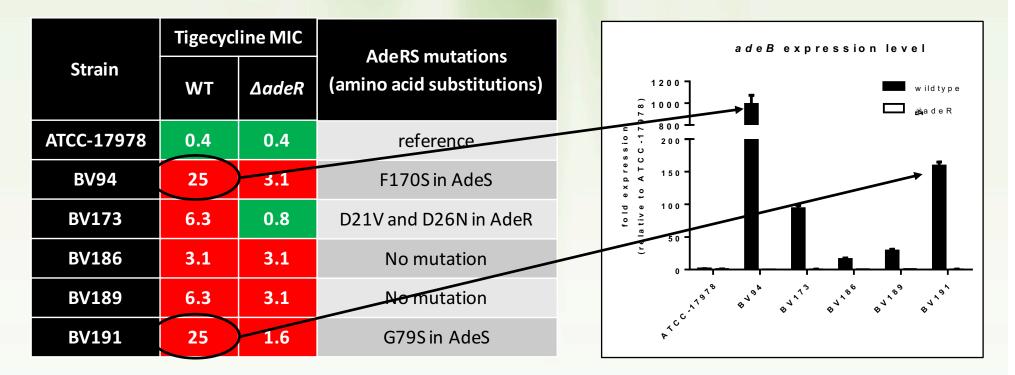
AdeRS TCSs controls tigecycline efflux AdeR as drug target for adjuvants?



Tigecycline resistance:

- 1. Tigecycline triggers AdeABC efflux pump overexpression
- 2. AdeABC effluxes tigecycline to reduce intracellular concentration

AdeR plays a major role in tigecycline resistance but presence of alternative mechanism BIOV ERSYS


	Tigecycline MIC				
Strain	WT	∆adeR			
ATCC-17978	0.4	0.4			
BV26	6.3	0.4			
BV94	25	3.1			
BV173	6.3	0.8			
BV175	3.1	0.8			
BV185	6.3	3.1			
BV186	3.1	3.1			
BV187	3.1	3.1			
BV189	6.3	3.1			
BV190	6.3	0.8			
BV191	25	1.6			

- adeR deletion reduced MIC₉₀ from 25µg/ml to 3.1µg/ml
- Clinically accepted susceptibility breakpoint: 1ug/mL
- → 60% of ∆adeR mutants remained tigecycline non-susceptible

AdeR plays a major role in tigecycline resistance but presence of alternative mechanism BIOV ERSYS

SWITCHING OFF BACTERIAL RESISTANCE

- adeR is essential for AdeABC expression
- Tigecyline resistance is mediated by adeABC drug efflux
- Sequencing of TCS identified no mutation in strains not responding to loss of adeR

→ Alternative resistance mechanism(s), independent of AdeR

Artifical resistance development and whole genome sequencing

	Muta	Constitution				
Mutated genes or regions	ATCC-17978(TGC)	ATCC-17978 _{AadeR} (TGC)	Gene function			
trm (A1S_2858)	IS-17 like transposon disruption	Loss of adenine at position 311 leads to premature stop codon	Methyltransferase potentially involved in rRNAs methylation			
RNase E (A1S_0403)	58 bp deletion	-	Ribonuclease involved in rRNAs processing and RNA decay			
Intergenic region between RNase E (A1S_0403) and 23S rRNA pseudouridylate synthase (A1S_0404)	ISaba11 element inserted at position 439,336	-	RNase E see above. 23S rRNA pseudouridylate synthase involved in modification of 23S rRNA			
adeN (A1S_1979)	-	IS transposon disruption	Transcriptional repressor of the AdeIJK efflux pump			
abeM (A1S_0395)	-	C->T mutation (position 429,259) in the promoter region of abeM	MATE family efflux pump			

- *DadeR* mutant were able to develop tigecycline resistance
- *trm* was the only mutated gene in both strains
- → Is *trm* disruption a general tigecycline resistance mechanism?

trm disruption is not the only trigger for the alternative resistance mechanism BIOVERSY

Strain	Isolation Tigecycline MIC <i>trm</i> mutation		trm mutations	SWITCHING OFF DACTERIAL RESISTANCE		
Strain	Location	Date	WT	∆adeR	(nucleotide)	
ATCC-17978	France	1951	0.4	0.4	No mutation	
BV26	Switzerland	1979	6.3	0.4	No mutation	ightarrow isolated before tigecycline approval
BV94	USA	2011	25	3.1	G1065	
BV173	Greece	2012	6.3	0.8	A240	
BV175	Turkey	2012	3.1	0.8	A240	
BV185	Mexico	2013	6.3	3.1	A240	
BV186	USA	2013	3.1	3.1	G1065	trm disruption cannot be the
BV187	USA	2013	3.1	3.1	G1065	only driver of resistance
BV189	Spain	2013	6.3	3.1	A240	
BV190	Greece	2012	6.3	0.8	T1050	
BV191	China	2013	25	1.6	A240	

- Correlation between *trm* disruption and tigecycline exposure
- However, loss of *adeR* in renders 3 strains tigecycline susceptible while *trm* was disrupted
- \rightarrow *trm* disruption cannot be the only driver of resistance

Facts that devalidated AdeR as a drug target

- 1. AdeABC-mediated tigecycline efflux is the major resistance mechanism
 - loss of AdeR reduces tigecycline MIC₉₀ from 25µg/ml to 3.1µg/ml
 - the *adeABC* efflux pump expression is abolished in Δ*adeR* mutants
 - we found a correlation between tigecycline MICs, AdeRS mutations and AdeABC expression level
- **2.** 60% of Δ*adeR* mutants remained resistant to tigecycline
- 3. We successfully developed tigecycline resistance in a $\Delta a deR$ strain
- 4. We identified a candidate protein involved in an alternative resistance mechanism
 - whole genome sequencing identified *trm* as the only gene mutated in the two independently evolved tigecycline resistant strains
 - *trm* gene was disrupted in 9 of 10 primarily tested tigecycline resistant clinical isolates
 - loss of *adeR* renders 3 strains tigecycline susceptible while *trm* is disrupted
 - \rightarrow *trm* disruption cannot be the only driver for an alternative resistance mechanism

AdeR inhibition by small molecule drug will not re-sensitize A.baumannii to tigecycline

Acknowledgements

SWITCHING OFF BACTERIAL RESISTANCE

Vincent Trebosc* Sarah Gartenmann Kevin Royet Birgit Schellhorn Michel Pieren, PhD Sergio Lociuro, PhD Peter C. Sennhenn, PhD Marc Gitzinger, PhD Marcel Tigges, PhD Christian Kemmer, PhD

BIOZENTRUM

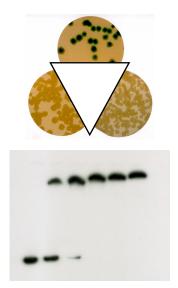
Universität Basel The Center for Molecular Life Sciences

Pablo Manfredi Prof. Dr. Dirk Bumann

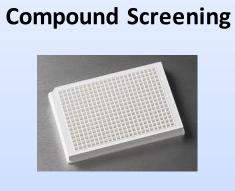
*Funded by the Marie Curie Initial Training ITN-2013-607694-Translocation

For further information, please contact Christian.Kemmer@bioversys.com

backup

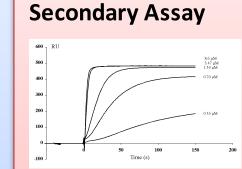


Overview Drug Discovery



SWITCHING OFF BACTERIAL RESISTANCE

Target Identification and Validation



Genetic, cellular and *in vivo* experimental models to identify and validate targets

High throughput (HTP) primary screenings

Constant, iterative compound synthesis to improve compound properties

In vitro and ex vivo secondary assays (mode of action, selectivity)

In vitro assessment of pharmacological properties of the compounds

In vivo

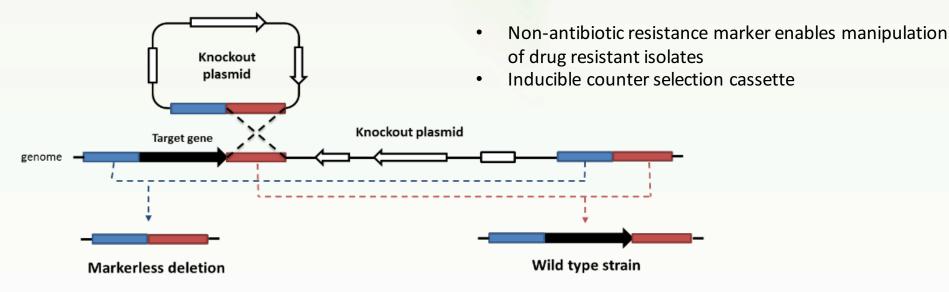
In vivo assessment of pharmacological properties

Infection efficacy model

Early safety and toxicity studies

Adapted from Hughes et al. BJP, 2011

Urgent unmet medical need in Gramnegative bacteria



Drug target evaluation with knockout in relevant clinical strains

Strain designation	isolation		MLST	Resistance profile for XDR (non-susceptible to \geq 1 antibiotic in all but \leq 2 categories)									
	location	date	IVILSI	GENT	MERO	CIP	T/C	TZP	СТХ	SXT	SAM	COL	TET
ATCC 17978	France	1951	77	S	S	S	S	S	1.1	R	S	S	S
BV26	Switzerland	1979	1	R	S	R	R	S	1.1	R	R	S	R
BV94	USA	2011	2	R	R	R	R	R	R	R	1	R	R
BV173	Greece	2012	2	R	R	R	R	R	R	R	R	R	R
BV175	Turkey	2012	2	R	R	R	R	R	R	R	R	R	R
BV185	Mexico	2013	2	R	R	R	R	R	R	R	R	R	R
BV186	USA	2013	2	R	R	R	R	R	R	R	R	R	1
BV187	USA	2013	2	R	R	R	R	R	R	R	1	R	1
BV189	Spain	2013	2	R	R	R	Х	R	R	R	R	R	R
BV190	Greece	2012	1	R	R	R	Х	R	R	R	R	R	R
BV191	China	2013	2	R	R	R	Х	R	R	R	R	R	R

